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The aim of the study was the histomorphometric comparison of the osteogenic potential of b-
tricalcium phosphate (b-TCP) alone or in a calcium sulfate matrix. Three round defects, 10 mm

(diameter) 3 5 mm (depth), were created on each iliac crest of 4 dogs. The defects were divided into 3
groups. Ten defects were filled with b-TCP in a calcium sulfate (CS) matrix (Fortoss Vital; group A), 10

defects were filled with b-TCP alone (Fortoss Resorb; group B), and 4 defects were left ungrafted to
heal spontaneously (group C). All defects were left to heal for 4 months without the use of a barrier
membrane. Histologic evaluation and morphometric analysis of undecalcified slides was performed

using the areas of regenerated bone and graft remnants. All sites exhibited uneventful healing. In
group A sites (b-TCP/CS), complete bone formation was observed in all specimens, graft granules

dominated the area, and a thin bridge of cortical bone was covering the defect. Group B (b-TCP)
defects were partially filled with new bone, the graft particles still dominated the area, while the outer

cortex was not restored. In the ungrafted sites (group C), incomplete new bone formation was
observed. The outer dense cortical layer was restored in a lower level, near the base of the defect. The

statistical analysis revealed that the mean percentage of new bone regeneration in group A was higher
than in group B (49.38% and 40.31%, respectively). A statistically significant difference existed between

the 2 groups. The beta-TCP/CS group exhibited significantly higher new bone regeneration according
to a marginal probability value (P¼ .004 , .05). The use of b-TCP in a CS matrix produced significantly
more vital new bone fill and preserved bone dimensions compared with the use of b-TCP alone.
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INTRODUCTION

A
prerequisite for achieving a successful

outcome using dental implants is the
adequate bone volume and quality at
the recipient site.1 However, this is not
usually the case due to postextraction
trauma, bone resorption, or periodontal

defects. Guided bone regeneration (GBR) is a well-
established method to exclude soft-tissue cells by
means of barrier membranes.2–4 One of the alterna-
tives to overcome membrane collapse is the use of a
graft material to support the membrane by filling the
space beneath, which may also act as a scaffold of
bone ingrowth.5–9 Nowadays, a large number of filling
materials are available, among which autogenous
bone is still considered to be the gold standard.
However, harvesting autogenous bone has its disad-
vantages: secondary donor site surgery, extended
operating time, risk of complications, as well as limited
amount of graft material.10,11 Furthermore, one of the
main advantages of using autogenous bone, that is, its
osteogenic and osteoinductive potential, has been
questioned lately, since studies have shown that it
undergoes necrosis.12–14 As an alternative, bone graft
substitutes such as xenografts, allografts, or alloplastic
materials have been proposed. Among the most
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promising is the tricalcium phosphate (TCP), an
alloplastic ceramic material studied and used exten-
sively in the past decades.15–19 It is considered to be
bioactive (by means of inducing specific biologic
reactions) and biocompatible (not stimulating inflam-
matory or foreign-body giant cell activity).16,20,21 This
is mainly because TCP is composed of Ca and P ions,
which are the most commonly found elements in
bone. However, TCP cements have a slower resorption
rate than bone and are usually too dense to allow
bone tissue to grow into the defect in a limited period
of time.22–24 By adding a faster resorbing material,
pores may be created, ensuring new bone tissue
growing into the defect.

Calcium sulfate (CS) has been used as a bone filler
for many decades25,26 and is considered to be highly
biocompatible and bioresorbable.27,28 However, CS
alone is not an effective material as bone filler since its
resorption rate is considerably faster than bone
growth, resulting in an absence of the appropriate
scaffold within the defect. This means that CS has
time-limited osteoconductive properties, as docu-
mented by many studies.29,30 By mixing CS with other
bone graft materials, the osteogenesis is accelerated,
by accomplishing increased calcification and quantity
of new bone in a shorter period of time.31,32

The aim of the present study is the histological
evaluation of the osteogenic potential of b-TCP (b-
TCP) alone or in combination with a CS matrix without
using a membrane, in bony defects of a canine model.

MATERIALS AND METHODS

Graft material

Two types of bone substitutes were tested.
Fortoss Resorb (Biocomposites Ltd, Keele, Stafford-

shire, England) is a porous b-TCP synthetic graft in a
granular form with a particle size of 250 to 500 lm.

Fortoss Vital (Biocomposites Ltd) is a synthetic
composite biomaterial based on a porous b-TCP in a
matrix of calcium sulfate.

Animal model

The protocol of the study was approved by the
standing committee on Animal Research at Veterinary
Headquarters of Karditsa Prefecture, Thessalia, Greece.

Four adult Beagle dogs were used. The dogs were
housed in Surgery Clinic (Faculty of Veterinary
Medicine, University of Thessaly, Karditsa, Greece)
and maintained according to E.U.–Guide for the Care
and Use of Laboratory Animals.

Surgical procedure and experimental design

The dogs were not fed for 12 hours before general
anesthesia to prevent aspiration of stomach contents.

All operating procedures were performed under
general anesthesia and sterile conditions in an animal
operating theatre. The dogs were premedicated with
0.7 mg/kg xylazine (Rompun; Bayer, Leverkusen,
Germany) intramuscularly. Anesthesia was induced
with 5 mg/kg sodium thiopentone (Pentothal; Abbott
Laboratories, Chicago, Ill) intravenously and main-
tained with a mixture of isoflurane (Forenium; Abbott
Laboratories) and oxygen in a semiclosed breathing
circuit.

Artificial bony defects were created between the
cranial and caudal dorsal iliac spine of the iliac wing of
the animals by the aid of trephine burs. In each ilium, 3
defects of 10-mm diameter and 5-mm depth were
prepared (Figure 1). In this way, a total of 24
experimental defects were made that were divided
into 3 groups: in group A, 10 defects were filled with
Fortoss Vital; in group B, 10 defects were filled with
Fortoss Resorb; and a control group of 4 defects (1 in
each dog) were left unfilled for spontaneous healing
(Figure 2). All surgical sites were covered by the
periosteum, muscles, fat tissues, and skin without
using any barrier membrane and sutured (Vicryl,
Ethicon GmbH, Norderstedt, Germany).

The animals were followed postoperatively; 12 mg/
kg of amoxicillin and clavulanic acid (Synulox; Pfizer,
New York) were administered for 5 days, and the
wound was left to heal for 4 months. At the end of this
period, the whole iliac crest was removed intact by the
aid of burs, scalpels, and chisels without killing the
animals and processed for histological analysis.
Location of the defects’ site during retrieval surgery
was proven to be uneventful because of their large
diameter.

Histological processing

The bone samples, after their removal, were cleaned
from the soft tissues, rinsed with saline, and placed in
a fixative consisting of 10% neutral buffered formalin.
The specimens were dehydrated in increasing grades
of ethanol, ending in absolute 100% alcohol, infiltrated
in resin (Technovit 7200, Heraeus Kulzer GmbH,
Wehrheim, Germany) and polymerized for 12 hours
under blue light. Using a high-speed rotating diamond
blade microtome (Accutom II, Struers, Copenhagen,
Denmark), 200- to 250-lm-thick sections were ob-
tained, which were further reduced by a grinding unit
(DAP-V, Struers) to a final thickness of about 60 to 80
lm. Sections were stained with a solution of toluidine
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blue and pyronin G. The histological sections were
evaluated using a transmission light microscope
(Axiostar Plus, Zeiss, Göttingen, Germany) with an
integrated color video camera (DC88AP, Sony, Tokyo,
Japan) and a frame grabber. The ActioVisio (Zeiss,
Göttingen, Germany) image analysis software was
used to digitize the selected images for the histo-
metric analysis. Bone graft area (BGA) and the total
volume of the regenerated bone (BV) were measured
and expressed as a percentage of the total defect area.
The statistical comparison of the measurements
between the groups was made using the Student t
test. The level of significance was set at P � .05.

RESULTS

Histological evaluation

In the b-TCP/CS combination group, complete regen-
eration of the defects was observed in all specimens. A
thin bridge of cortical bone was covering the defect,
resembling the outer cortex. Graft granules dominated
the sites and were always restricted within the defect
limits. In most of the cases, they were located within
the lacunae of the new cancellous bone under the
cortex or in some regions were impacted in the
cortical bridge (Figure 3). The graft particles were
partially or completely embedded in new lamellar
bone with osteons in various developmental phases
(Figure 4). In higher magnification (3100), close
contact of the material with new bone may be
detected as well as the resorption activity (Figure 5).

The defects of the b-TCP group were dominated by
the graft granules; however, they were also partially

filled with new bone, while the outer cortex was not
restored. Concavities of various sizes with epithelial
tissue ingrowth can be seen in the center of the
artificial defect (Figure 6). Some particles were based
at the superficial bony layer and protruded toward the
soft tissues (Figure 7). In some cases, the outer bony
layer had a tendency to bridge the defect, but it was
still interrupted by soft connective tissue invasion
(Figure 8). Fortoss Resorb granule remnants were
found within the soft tissues adjacent to the defect.
Specimens that showed greater regeneration capabil-
ity were also found, without the presence of the dense
cortex that was characteristic of the b-TCP/CS group,
however. However, numerous osteons were present in
this area, indicating the high remodeling activity of
the new bone. Despite the quantitatively inferior bone
augmentation, the level of maturation and arrange-
ment of the new bone had the same characteristics as
the samples of the previous group.

In both grafted groups, bone substitute showed
closed contact with the young lamellar bone, with no
signs of inflammatory or rejection reactions.

The histological evaluation of the ungrafted sites
revealed incomplete new bone formation presenting a
characteristic concavity (Figure 9). The outer dense
cortical layer was restored but in a lower level near the
native bony base and walls of the defect.

Morphometric results

Histomorphometric analysis of the bone grown in the
b-TCP/CS group showed a mean value of 49.38% (SD,
6.73; SE, 2.13), whereas in the b-TCP group, it
measured 40.31% (SD, 5.42; SE, 1.71). Statistical

FIGURES 1–2. FIGURE 1. Three experimental defects, 10 3 5 mm, were created in each iliac crest. FIGURE 2. One defect in each iliac crest was left
unfilled for spontaneous healing.
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analysis of these data demonstrated a significant
difference between the 2 groups (P ¼ .004 , .05).
The ungrafted sites demonstrated a mean bone
growth of 17.77% (SD, 2.98; SE, 1.49). The remaining
graft volume in the b-TCP/CS group was measured at
21.62% (SD, 4.27; SE, 1.35), and in the b-TCP group, it
was 19.69% (SD, 7.39; SE, 2.34). Results are shown in
Tables 1 and 2.

DISCUSSION

Tricalcium phosphate as a bone graft substitute has
been evaluated at length in previous studies. It binds
to bone by means of mechanical anchorage with no
formation of intermediate apatite layer.33–35 Biore-
sorption of TCP granules occurs due to chemical

dissolution in biological fluids and cellular degrada-
tion. Solubilization is induced by mesenchymal cells,
which are also actively involved in the degradation
process.36,37 Studies have shown the capability of
osteoblastic cells,38 fibroblasts,39 and osteoclasts40 to
degrade TCP ceramic material. Monocyte/macrophage
participation is well documented in vivo41 as well as in
vitro.42

It seems that the more soluble a CaP ceramic, the
more rapidly it is resorbed by osteoclasts. However,
the increased number of released calcium ions may,
on one hand, inhibit osteoclasts’ activity,40 while on
the other hand, it provides a good environment for
osteogenesis.35 Therefore, it seems that TCP resorp-
tion is performed at a rather unpredictable rate that
does not always correspond to the new bone
formation rate. This behavior is evident in the

FIGURES 3–6. FIGURE 3. All b-tricalcium phosphate (b-TCP)/calcium sulfate (CS) group defects were filled with newly formed bone covered by a
thin bridge of cortical bone (original magnification 325). FIGURE 4. b-TCP/CS graft particles embedded in new lamellar bone (original
magnification 340). FIGURE 5. In high-magnification resorption of b-TCP/CS, graft material may be detected in close contact with new bone,
red arrows (original magnification 3100). FIGURE 6. The defects of the b-TCP group were partially filled with new bone while the outer
cortical bridge was absent (original magnification 310).
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conflicting results of many studies on the bioresorp-
tion of TCP.43–47 The b-phase isomer of TCP (b-TCP),
however, is characterized by physiologic pH, homog-
enous microporosity, increased solubility, and a more
predictable resorption rate that resembles the new
bone remodeling rate. Variations in composition or
impurities may affect solubility, whereas the pure
phase seems to be resorbed in 5 to 6 months.21,48 It

should be noted that a faster resorbable material
might allow soft-tissue cells to prematurely intrude
into the defect, while nonresorbable or slowly
resorbable materials that remain for a long time may
inhibit new bone deposition.30

Material microporosity seems to regulate its
degradation rate and provides the right environment
for the deposition of new bone by the adjacent living
bone.49,50 The presence of CS increases the porosity of
the grafting material by its early resorption, while it
facilitates the circulation of biological fluids and
growth factors. Nevertheless, the exact period of time
that CS remains in a bony defect without being
resorbed has not yet been estimated. It is reported,
however, to be approximately 4 to 5 weeks28,51,52;
however, other studies report 4 to 10 weeks,53 16
weeks,54 6 months,55 or even 9 months.56 In any case,
the CS degradation rate depends on many factors
such as the vascularity and the size and shape of the
defect.

Schenk57 stated that a stable material surface plays
FIGURES 7–9. FIGURE 7. Occasionally b-tricalcium phosphate (b-TCP) graft
particles protruded superficially toward the soft tissues (original
magnification 340). FIGURE 8. Numerous soft connective tissue
invasions from the surface toward the center of the defect were
observed in the b-TCP group specimens, red arrows (original
magnification 325). FIGURE 9. Ungrafted site: incomplete bone
formation near the native bony walls with restoration of the outer
cortex (original magnification 310).

TABLE 1

New bone volume values (%)*

b-TCP/CS b-TCP Without Graft

50.94 40.46 17.60
48.67 40.15 16.70
61.67 33.96 21.89
39.45 38.87 14.87
46.56 49.98
47.47 39.79
55.3 44.66
40.57 30.35
48.37 41.89
54.78 43.03

Mean 49.38 40.31 17.77
SD 6.73 5.42 2.98

*b-TCP indicates b-tricalcium phosphate; CS, calcium sulfate.

TABLE 2

Remaining graft volume values (%)*

b-TCP/CS b-TCP

30.44 6.98
23.76 12.53
18.46 20.44
22.67 18.96
20.53 29.56
17.89 28.89
25.67 17.45
19.48 26.98
15.76 21.36
21.56 13.78

Mean 21.62 19.69
SD 4.27 7.39

*b-TCP indicates b-tricalcium phosphate; CS, calcium sulfate.
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an important role in GBR procedures. That is, the more
solid the scaffold of the graft, the more successful the
outcome. Covering the defect by a barrier membrane,
specially a reinforced one, increases immobilization of
the bone substitute, avoids its displacement, and
improves its osteoconductive properties.58 In contrast,
several studies suggest that a membrane is not
absolutely necessary and may even interfere with
bone regeneration because it compromises blood
supply from the periosteum and impedes its osteo-
genic effect, which is attributed to the inner cambial
layer.59,60 Salata et al61 found that the use of GBR
membrane in combination with bone substitutes did
not significantly improve bone formation compared
with the use of bone substitutes alone. The findings of
the present study do not support the opinion that a
membrane in bone regeneration procedures is super-
fluous. This would ignore many significant studies that
clearly show the benefit of using a barrier membrane
even without using bone filler.2,4,5,62 In any case, a
membrane group was not used for comparison. The
results should be interpreted only as an out-perfor-
mance of the b-TCP/CS group compared with the b-
TCP alone.

Research data suggest that the occlusive proper-
ties of barrier membranes may be achieved by other
biomaterials such as CS. Calcium sulfate acts as a
binder and enhances graft containment, making the
mixture more stable and pressure resistant.27 In a
series of studies, CS barrier properties were tested in
bone or periodontal defects in conjunction with a
variety of grafts. These studies showed that the CS
barrier increases the vital bone volume,63 promotes
periodontal regeneration,64 excludes epithelial and
connective tissue cells, and preserves the alveolar
ridge dimensions after tooth extraction.65–67 Payne et
al,68 in an interesting in vitro study, compared the
migration ability of human gingival fibroblasts stimu-
lated by chemotactic substances on 3 different
barriers: CS, e-PTFE membrane, and polylactic acid
membrane. Calcium sulfate proved to be the most
compatible, showing the least interference to cell
migration. The problem that seems to be related to
the use of a CS barrier is the possibility of the early
material resorption and the fractures that may occur
on the material surface during the initial postoperative
period by any kind of pressure exercised on it. Both of
these parameters may allow epithelial ingrowth in the
defect area. These latter disadvantages may be
surpassed by the use of a b-TCP/CS combination. This
mixture solidifies in a few minutes’ time after mixing
and creates a stable mass with a surface that is not
vulnerable to fractures. Whether epithelial ingrowth

takes place after CS is resorbed is questionable
because the main scaffold of the material is preserved
and the pores that are left are relatively small.

It should be noted that bone regeneration seems
to vary widely between the different species or even
between individual animals of the same species.
Furthermore, it is differentiated by the type of bone,
the age of the individual, and the presence of the
periosteum.69,70 Mainly, however, healing is largely
dependent on wound size and shape, which means
that a small 5-wall defect may heal spontaneously
without the aid of a graft material or a membrane. On
the contrary, a critical size defect (CSD) is defined as
the smallest intraosseous wound that does not heal
spontaneously by bone formation during the lifetime
of the animal or human being.71 In a later study, a CSD
was defined as a defect that has less than 10% bony
regeneration during the lifetime of the animal.72 In the
case of the canine ilium, the CSD has not yet been
identified.

The number of walls of the host bone defect is
critical and should always be taken into consideration
when comparing study results. In the present study,
cylindrical monocortical defects were created. This
shape may be compared with an extraction socket,
that is, a 5-wall defect model, a situation quite
common in everyday clinical practice. A 10-mm-
diameter defect was chosen as it was estimated that
this would be similar to a CSD for the dog’s ilium.
These defects failed to heal spontaneously, and, in any
case, a defect of that size would be a challenge to
regenerate in clinical practice.

In the present study, the b-TCP/CS combination
demonstrated complete regeneration up to the cortex
in all 10-mm specimens tested, while b-TCP alone did
not succeed in regenerating these large-diameter
defects. It is not the first time that CS was used in
combination with other biomaterials.27,51,73 However,
differences in powder processing lead to changes in
elements’ ratios, that is, in the specific case, the Ca/P
ratio, which alters the surface chemistry. This leads to
differences in the surface Z-potential of the graft. The
mineral scaffold of Fortoss Vital is a stoichiometric b-
TCP with a Ca/P molar ratio of 1.5. The Z-potential
assesses the degree of ionic activity of a material’s
surface, which is considered to be one of the main
physical factors that interfere in the biological
behavior of a tissue around an implanted material.74

This potential depends on a variety of factors, among
which is the composition of the implanted material
and the surrounding biological fluids, the inflamma-
tory situation, and the environmental pH.75 The
degree to which hydroxyl or carboxyl ion groups alter
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the ceramic to osteoblast attachment is not well
understood.76 The link between the Z-potential of
bioceramics and their resulting attraction to bone and
osteoblasts has been tested in previous studies as well
as the relation between the modifications in the
processing method of CaP powders and their resulting
Z-potential and, hence, their suitability for use as bone
tissue engineering scaffolds.77,78 It is well known that
protein adsorption plays an important role in graft
behavior and implant integration. The relation be-
tween Z-potential and protein adsorption has been
confirmed in previous studies.79 This means that by
controlling the Z-potential, by means of special graft
processing, host proteins may be attracted into the
surgical site, and a positive osteoblast activity is
created. This shifting of the isoelectric potential of the
surface of Fortoss Vital may be an explanation of its
positive regenerative behavior that has been demon-
strated in the present study.

CONCLUSION

This study demonstrated complete bone regeneration
of critical-size cylindrical bone defects 10 mm in
diameter using a composite alloplastic graft of b-TCP
in a CS matrix, without a membrane barrier. Use of b-
TCP alone resulted in partial bone formation in a 4-
month control period. The safety of the tested
material was demonstrated as well. Further research
should follow to define the critical-size defect in the
canine ilium and the necessary period of time for this
composite material to be resorbed.
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